

# Tumor Therapy with Ion Beams

# M. Scholz GSI Heavy Ion Research Center Darmstadt, Germany



#### Outline

- Why ion beams?
  - Physics: Improved dose delivery
  - Biology: Increased effectiveness
- Pilot project at GSI Heavy Ion Research Center
  - Physical / technical aspects
  - Radiobiology / biophysical modelling
- Translation to clinical application: HIT Heidelberg
- Future perspectives

# Limits of Conventional Photon Therapy







#### Advantage of Ion Beams: Physical



#### Variation of Penetration Depth



GSİ

#### **Comparison Proton – Carbon Ions**



Protons: more pronounced straggling Carbon: fragmentation of primary ions



#### **Biological Advantage: Increased Effectiveness**



Relative Biological Effectiveness:

$$RBE = rac{D_{\gamma}}{D_{Ion}}\Big|_{Isoeffect}$$

**Differential Effect:** 

 $RBE_{Depth} > RBE_{Entrance}$ 





# Definition: Relative Biological Effectiveness (RBE)



$$S = e^{-(\alpha D + \beta D^2)}$$

 $\alpha_{Ion} \geq \alpha_{Photon}$ 

 $\boldsymbol{\beta}_{Ion} \leq \boldsymbol{\beta}_{Photon}$ 

 $RBE_{\alpha} = \frac{\alpha_{Ion}}{\alpha_{Photon}}$ 



ANSTO

#### Survival after Carbon Ion Irradiation



- Increasing effectiveness with decreasing energy
- Saturation effects at very low energies (<10 MeV/u)</p>
- Transition from shouldered to straight survival curves

## Linear Energy Transfer Dependence of RBE



Weyrather et al. IJRB 1999

GSI

# Pilot project for ion beam therapy at GSI







Cooperation partners: Radiologische Klinik Heidelberg Krebsforschungszentrum Heidelberg Forschungszentrum Rossendorf Special developments:

Active beam delivery (Rasterscan)

Positron emission tomograpy for range verification

Biologically optimized treatment planning



### **GSI** Accelerator and Therapy Facility



Energies: < 15 MeV/u (UNILAC), < 2 GeV/u (SIS) Ion species: Proton ... Uranium

#### **Active Beam Delivery**



#### **Accelerator Requirements**

- Computer control of complete accelerator complex
- No manual interaction during irradiation
- Fixed accelerator parameters for library of 250 beam energies (5-35cm penetration depth)
- Slow extraction of beam for typically 5 sec.
- Variation of energy from pulse to pulse, i.e. within typically 2 seconds
- Library of 15 intensity steps and 7 focus steps chosen according to the dose level, size of the tumor and precision requirements
- Safety system for automatic abortion of beam in case of any failure

Comparison of Treatment Plans: Carbon lons vs. Photons

#### Carbon Ions 2 Fields

#### Photon IMRT 9 Fields



O. Jäkel et al.



#### Positron Emission Tomography for verification of penetration depth





#### **Depth Dependence of RBE**



## Depth Dependence of RBE



Goal of treatment planning: Homogeneous effect in target region Reduction of dose towards distal peakto account for increase of RBE

#### Treatment planning for carbon ions



## **Radiation Biology: Basics**



Cell nucleus represents the "critical target", because it contains genetic information (DNA) Genomic content of mammalian cell:

 $\sim 3 \times 10^9$  base pairs



28.10.2014

ANSTO

## **Basics of Modelling**



ANSTO

## Local Effect Model LEM

Basic Assumption: Increased effectiveness of particle radiation can be described by a combination of the photon dose response and microscopic dose distribution

#### Local Effect (Photons) = Local Effect (lons)



#### LEM: Transfer of low-LET experience to high-LET



#### Basic Idea of LEM

Background: ,Giant Loop Model' of DNA / chromatin organization



ANSTO

#### Basic Idea of the LEM





#### Comparison LEM – Experimental Data



Elsässer et al., IJROBP 2010

LEM is implemented in treatment planning for biological optimization; RBE is calculated in each individual voxel

# Further Support for iDSB / cDSB Concept

- Modelling of photon dose response (GLOBLE) Friedrich et al., Rad. Res. 2012
- Kinetics of DSB rejoining after high-LET and low-LET Tommasino et al., Rad. Res. 2013
- Dose rate effects after low-LET Herr et al., PLOS ONE 2014
- Increased RBE of ultrasoft X-rays Friedrich et al., Rad. Res. 2014
- Cell cycle dependent radiosensitivity Hufnagl et al., under revision for DNA Repair (2014)
- Impact of DSB repair deficiencies Hufnagl et al., under revision for DNA Repair (2014)

#### **RBE-Map**



28.10.2014

ANSTO

# Comparison LEM – HIMAC approach

#### LEM-based RBE-weighted dose vs. HIMAC-based RBE-weighted dose



Steinsträter et al., IJROBP 2012

Identical numbers do not necessarily mean identical effect!

## **Clinical Results**

- Tumor types: Chordoma, Chondrosarcoma, Adenoid-cystic carcinoma, (Prostate carcinoma)
- Treatment scheme: 20F Carbon ions
   6F Carbon ions + IMRT
- ~440 Patients 1997 2008
- Better tumor control, fast response
- Lower normal tissue complications

# Clinical based facility in Heidelberg

#### Comparison with other modalities



ANSTO

#### **Comparison HIT - GSI**



ANSTO

# Heidelberg Ion Beam Therapy Centre HIT





Start of patient treatments: 2009
~ 2000 patients treated up to now (up to 750 patients / year)
Combined p / C (He / O planned)



# Heidelberg Ion Beam Therapy Centre HIT

#### First Heavy Ion Gantry System



![](_page_32_Picture_3.jpeg)

© Univ. Clinics Heidelberg

#### **Treatment Room**

Length: 25m D Weight: 670 t P

Diameter: 13m Precision: <1mm

![](_page_32_Picture_8.jpeg)

#### **Clinical Trials at HIT**

- Chordoma / Chondrosarcoma
- Rectum carcinoma
- Recurrent Glioma, Glioblastoma
- Hepatocellular carcinoma
- Prostate carcinoma

![](_page_34_Picture_0.jpeg)

- Facilities in operation (Oct. 2014):
  - 46 proton facilities
  - 8 carbon ion facilities
- Proposed facilities / under construction:
  - 24 proton facilities
  - 4 carbon ion facilities
- Major task for future applications of ion ions:
- $\longrightarrow$  Reduce the number of fractions:

"Hypofractionation"

 $\rightarrow$  Compare different ion species:

p, He, C, O

![](_page_34_Picture_12.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_1.jpeg)

Heavy-Ion Therapy at GSI Dec. 1997 Collaboration: FZ Rossendorf - GSI Darmstadt - Radiol. Klinik Heidelberg - DKFZ Heidelberg

![](_page_35_Picture_3.jpeg)

![](_page_35_Picture_4.jpeg)

![](_page_35_Picture_5.jpeg)

![](_page_35_Picture_6.jpeg)

ANSTO

![](_page_36_Picture_0.jpeg)

# Thank you!